Lessons Learned from Cardiopulmonary Clinical Decision Support Systems

Nicolas W. Chbat, PhD
Principal Member Research Staff
Philips Research North America, New York

July 3, 2013
IEEE EMBC ’13, Osaka, Japan
Agenda

..from a personal account..

- Biomedical Engineering Vs. Medicine
- Fields of Biomedical Engineering
- Decisions need in medicine
- Clinical Decision Support in cardiopulmonary medicine
- Examples and lessons (hopefully) learned
- Conclusion
Engineering, Medicine: Knowledge Sources

Implicit or Explicit Structure of Models
Biomedical Engineer

• Engineering design (devices, etc.)
• Sensor development (chemistry, physics, material, etc.)
• Signal processing (Imaging, physio/biological signals, etc.)
• **Algorithm development (feature extraction, CDS, etc.)**
• Wet lab work (biological, chemical, tissue, etc.)
• Software development (cloud, interop, GUI design, etc.)
• Regulatory processes (IRB, ICBE, Contracts, FDA, etc.)
• Testing and verification (eng’g testing and V&V, RCTs, etc.)
• Many others
Decisions Need in Medicine

- Strategic decisions
- Tactical decisions
- Functional decisions

Fig. 1. Problem space.

- ED
- Ambulance/Helicopter
- General Ward
- OR
- **ICU**
- Care Facility
- Home

A. Seiver, Discussions, 2010–Present
Decisions in Critical Care Medicine

What will happen to the patient? When will it happen?

Should I…
• set PEEP to 10?
• remove ventilation support?
• administer antibiotics?

Will the patient develop ARDS? When?

When will fluids improve kidney perfusion? When will I have caused additional lung injury?

Propofol dosage?

Steroids? Delaying death or improving life?

Outcomes
• Home
• Care Facility
• ICU LOS
• Delayed death
• Short-term disability
• Long-term disability
• Mortality

How can we answer these questions? One approach is...
• Develop a model for early detection of acute illness, so we can...
• Predict time dynamics of patients’ vitals, labs, etc., enabling Forecasting
The Cardiopulmonary System and the Importance of Modeling
The Cardiopulmonary System

- Heart and Circulatory System
- Lungs and Gas Exchange
- Tissue Metabolism

Control Mechanisms:

- **Short-term:**
 - Baroreceptors
 - Chemoreceptors
 - Lung Stretch Receptors

- **Long-term:**
 - Renal control
 - Humoral control (ADH, RAAS)
 - Capillary fluid shift
Importance of Physiological Modeling

Clinical medicine needs a quantitative approach to:

- Understand complex interactions and underlying mechanisms
- Assess physiological variables/parameters non-invasively
- Predict patient response to treatments
- Test medical devices more effectively and efficiently
Cardiopulmonary Model Developed

Cardiovascular System

Autonomic Nervous System
- Autoregulation
- Parasympathetic
- Sympathetic

CNS Ischemic Response
Baroreceptors
Lung Stretch Receptors

Peripheral Chemoreceptors
Central Chemoreceptors
Ventilatory Control System

Respiratory System
- Respiratory Muscles
- Lung Mechanics
- Mechanical Ventilator

Cardiovascular Control System

Heart
Circulation
Blood Flows
Blood Volumes

Gas Exchange and Transport
- Tissue Gas Exchange
- Lung Gas Exchange

Tidal Volume

N. Chbat – PRNA – Symposium IEEE EMBC13, Osaka, Japan
Validation: Hypercapnia

7% CO₂ step input

Respiratory Response

Cardiovascular Response

8% CO₂ step input

Cardiovascular Response

<table>
<thead>
<tr>
<th>ΔHR (beats/min)</th>
<th>ΔMAP (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+9.75</td>
<td>+15.5</td>
</tr>
<tr>
<td>+9.7</td>
<td>+12.5</td>
</tr>
</tbody>
</table>

**Averaged data over 10 subjects

Reynolds et al. (1972) *

Model

Mengesha et al ** (2000)

* Averaged data over 14 subjects

N. Chbat – PRNA – Symposium IEEE EMBC13, Osaka, Japan
Model Implementation
Graphical User Interface

Cardiopulmonary Model

Heart
- **Right Atrium**
 - Compliance: 31.25 ml/mmHg
 - Resistance: 0.0025 mmHg·s/ml
 - Unstressed Volume: 22 ml

- **Left Atrium**

Lungs

Neural
- **Right Ventricle**
 - Resistance Coeff.: 0.0014 s/ml
 - Unstressed Volume: 35.904 ml
 - Maximal Elastance: 1.412 mmHg/ml

Circulation

Metabolism

Gas Exchange

Variables
- Plot selection: Upper left, Upper right, Lower left, Lower right
 - Plot 1: Arterial O2 pressure
 - Plot 2: Alveolar O2 pressure

Parameters
- **Target PC**

Heart Diseases
- Chronic Heart Failure: 0%
- Heart Attack: 0%
- Cardiogenic Shock: 0%
- Valve Disease: 0%
Model-based CDS for Mechanical Ventilation/Anesthesia
Current Practice in Mechanical Ventilation
Noninvasive model-based assessment of patient respiratory muscles effort
Patient Respiratory Muscles Effort

• Quantify non-invasively and in real-time the effort spent to breath (WOB) while on a ventilator

• WOB is critical to:
 – Assess patient readiness to extubation [1]
 – Select appropriate ventilator settings (PSV levels) [2]
 – Prevent muscle fatigue and atrophy [3]

• Monitoring of WOB at the bedside:
 – Reduces the risk of ventilator induced injuries
 – Saves cost of extended hospitalization

Current state-of-art for WOB computation

Campbell Diagram

- C_L: Lung Compliance line
- C_{cw}: Chest Wall Compliance line
- I: Integral of Respirator Muscle Pressure (P_{mus}) over Volume
- E: Esophageal catheter
- 0: Pleural Pressure
- V: Volume

Commercial Device

<table>
<thead>
<tr>
<th>Commercial Device</th>
<th>Drawbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BiCore CP100 (Bicore, now CareFusion)</td>
<td>• Esophageal catheter used to estimate pleural pressure</td>
</tr>
<tr>
<td></td>
<td>• Expert operator and additional instrumentation required.</td>
</tr>
<tr>
<td>Ventrak 1500 (Novametrix, now Philips-Respironics)</td>
<td></td>
</tr>
</tbody>
</table>

Alternative methods

<table>
<thead>
<tr>
<th>Commercial Device</th>
<th>Method</th>
<th>Drawbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>VentAssist (Philips-Respironics)</td>
<td>Neural Network</td>
<td>• Averaged value over breaths</td>
</tr>
<tr>
<td>PAV+ (Puritan-Bennett, Covidien)</td>
<td>Integral of Respirator Muscle Pressure (P_{mus}) over Volume</td>
<td>• P_{mus} estimation imprecise</td>
</tr>
</tbody>
</table>
A Model-Based Solution

Parameter Estimation

Lung Mechanics Model

N. Chbat – PRNA – Symposium IEEE EMBC13, Osaka, Japan
Results: Transition from 10 to 0 PSV

PSV=10 cmH\textsubscript{2}O

PSV= 0 cmH\textsubscript{2}O
Results: Campbell Diagram and WOB at 10 PSV

![Diagram showing Campbell Diagram and WOB at 10 PSV](image-url)
Results: Campbell Diagram and WOB at 0 PSV
Current Practice vs. CL Approach

Current Practice: physician-in-the-loop

New Approach: physician outside the loop
Model-based (heuristic and data mining) Critical Illness Detection
Acute Respiratory Distress Syndrome (ARDS)

Inputs
- Discussions with physicians
- Published research articles
- Published standards
- Database (ICU & EMR)

Clinical Knowledge Sources
- Experience, heuristics, research, definitions

Clinical Data
- Vitals, labs, interventions, chronics, demographics

Algorithms
- Knowledge-based Algorithms
- Data-based Algorithms

Output
- Algorithm Aggregator
- Syndrome Status (ARDS)

ARDS Model Architecture
Lessons Learned (1/2)

• Using deterministic models
 – Majority of eng’g education spent on learning mathematical models
 – Depending on the engineering application field, use of models primarily to
 • Test and verify an intuition that the engineer has
 • Test and verify an experiment that the engineer performed

• Healthcare professionals: clinicians, and... engineers
 – Used to Epidimiological studies
 – Statistics, correlations, etc. (data-based)
 – Fancier data based \(\rightarrow\) discomfort among end users (MDs) (case...)
 – Engineers (R&D, App), engineering managers

• Room for explicit heuristic models
• Room for explicit deterministic models
• Room for explicit stochastic models
Lessons Learned (2/2)

• Animal testing
 – New demands created due to the fact that we use a model (case...)
 – IACUC

• Human Research Clinical Trials
 – New demands created due to the fact that we use a model (case...)
 – IRB

• Evidence-based medicine (case...)
 – Evidence \(\rightarrow\) backed up by data
 – Fuzzy, Bayesian thinking of how MDs diagnose a disease is still very valuable

• Personalized medicine
 – Molecular, DNA, small-scale are important and vital in some diseases
 – Does not mean macro-scale is not vitally important for many diseases (case...)
 – Fine tune your models in real-time \(\rightarrow\) also individualized medicine

• Present a model-based CDS to the end user
 – MD (case...)
 – Product manager - market study, etc. (case...)
Thank you Osaka for hosting us!

Thank you audience for listening…

Questions?